

# Application of low-cost accelerometers for measurement of whole body vibrations

Pasan Hettiarachchi Adrian Gomez Peter Johansson

AMM - Uppsala





# Whole body vibrations (WBV) and health risks

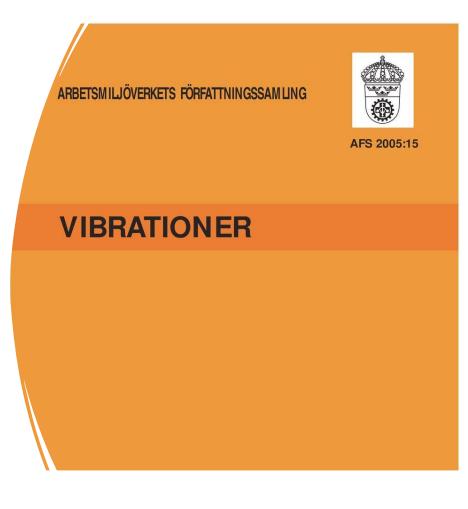


- What're whole body vibrations
  - Usually occur while operating vehicles
  - Leads to lower back pain and neck pain
  - 10% of the male working population of Sweden is subjected to whole body vibrations at least ¼ of the working time
  - Among blue-collar workers this could be as high as 25%








What does the Swedish work environment law demand?

• AFS 2001:1, 8 §

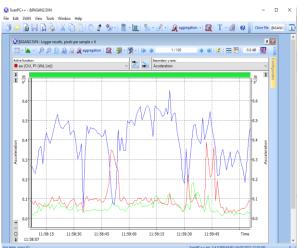
The employer must regularly examine the working conditions and assess the risks ...

• AFS 2005:15, 4-7 § §

...that may arise as a result of exposure to vibrations at work.







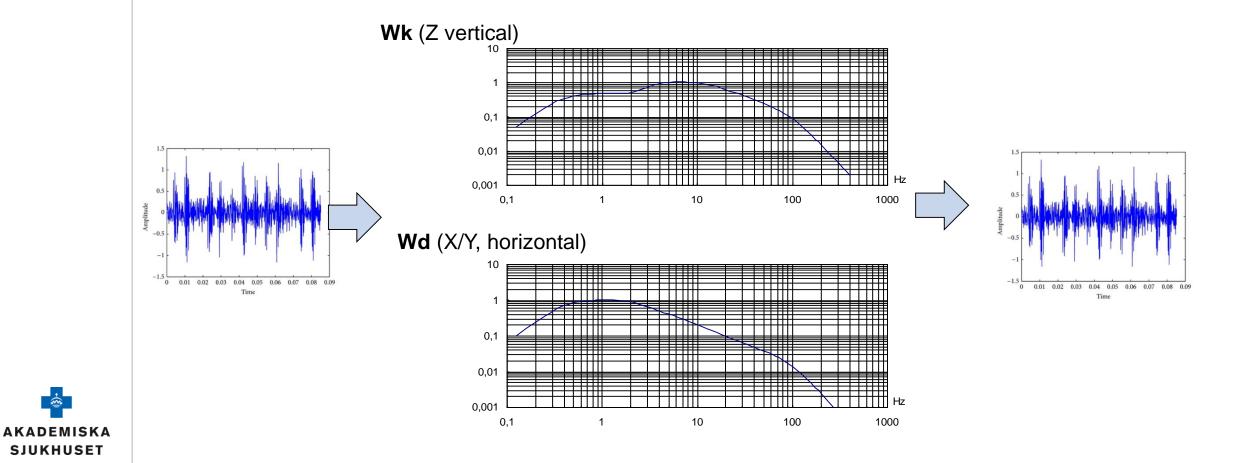

#### UPPSALA UNIVERSITET

### Typical whole body vibration risk assessment

- Find daily vibration dose levels
- Check whether they exceed "Action" or "Limit" values
- Take remedial actions (immediate if necessary)












#### WBV exposure calculation – Step 1

## Frequency weighted filtering according to iso2631 WBV-filter specifications





#### WBV exposure calculation – Step 2

$$a_{w} = \sqrt{\frac{1}{T} \int_{0}^{T} a_{w}^{2}(t) dt}$$
$$A(8) = a_{w} \sqrt{\frac{T}{T_{0}}}$$
$$A(8) = \sqrt{A_{1}(8)^{2} + A_{2}(8)^{2} + \dots}$$

| 40  | 267   | 800    | 1600   |      | 6400 | 9600 | 12800 |      | 19200 | 25600 | 3200 |
|-----|-------|--------|--------|------|------|------|-------|------|-------|-------|------|
| 30  | 150   | 450    | 900    | 1800 | 3600 | 5400 | 7200  | 9000 | 10800 | 14400 |      |
| 25  | 104   | 313    | 625    | 1250 | 2500 | 3750 | 5000  | 6250 | 7500  | 10000 | 1250 |
| 20  | 67    | 200    | 400    | 800  | 1600 | 2400 | 3200  | 4000 | 4800  | 6400  | 8000 |
| 19  | 60    | 181    | 361    | 722  | 1444 | 2166 | 2888  | 3610 | 4332  | 5776  | 7220 |
| 18  | 54    | 162    | 324    | 648  | 1296 | 1944 | 2592  | 3240 | 3888  | 5184  | 6480 |
| 17  | 48    | 145    | 289    | 578  | 1156 | 1734 | 2312  | 2890 | 3468  | 4624  | 5780 |
| 16  | 43    | 128    | 256    | 512  | 1024 | 1536 | 2048  | 2560 | 3072  | 4096  | 5120 |
| 15  | 38    | 113    | 225    | 450  | 900  | 1350 | 1800  |      | 2700  | 3600  | 4500 |
| 14  | 33    | 98     | 196    | 392  | 784  | 1176 | 1568  | 1960 | 2352  | 3136  | 3920 |
| 13  | 28    | 85     | 169    | 338  | 676  | 1014 | 1352  | 1690 | 2028  | 2704  |      |
| 12  | 24    | 72     | 144    | 288  | 576  | 864  | 1152  | 1440 | 1728  | 2304  | 2880 |
| 11  | 20    | 61     | 121    | 242  | 484  | 726  | 968   |      | 1452  | 1936  | 2420 |
| 10  | 17    | 50     | 100    | 200  | 400  | 600  | 800   | 1000 | 1200  | 1600  | 2000 |
| 9   | 14    | 41     | 81     | 162  | 324  | 486  | 648   | 810  | 972   | 1296  | 1620 |
| 8   | 11    | 32     | 64     | 128  | 256  | 384  | 512   | 640  | 768   | 1024  | 1280 |
| 7   | 8     | 25     | 49     | 98   | 196  | 294  | 392   | 490  | 588   | 784   | 980  |
| 6   | 6     | 18     | 36     | 72   | 144  | 216  | 288   | 360  | 432   | 576   | 720  |
| 5,5 | 5     | 15     | 30     | 61   | 121  | 182  | 242   | 303  | 363   | 484   | 605  |
| 5   | 4     | 13     | 25     | 50   | 100  | 150  | 200   | 250  | 300   | 400   | 500  |
| 4,5 | 3     | 10     | 20     | 41   | 81   | 122  | 162   | 203  | 243   | 324   | 405  |
| 4   | 3     | 8      | 16     | 32   | 64   | 96   | 128   | 160  | 192   | 256   | 320  |
| 3,5 | 2     | 6      | 12     | 25   | 49   | 74   | 98    | 123  | 147   | 196   | 245  |
| 3   | 2     | 5      | 9      | 18   | 36   | 54   | 72    | 90   | 108   | 144   | 180  |
| 2,5 | 1     | 3      | 6      | 13   | 25   | 38   | 50    | 63   | 75    | 100   | 125  |
| 2   | 1     | 2      | 4      | 8    | 16   | 24   | 32    | 40   | 48    | 64    | 80   |
|     | 5 min | 15 min | 30 min | 1h   | 2h   | 3h   | 4h    | 5h   | 6h    | 8h    | 10h  |

$$VDV = \{\int_{0}^{T} [a_{w}(t)]^{4} dt\}^{4}$$

$$VDV_{total} = \left(\sum_{i} VDV_{i}^{4}\right)^{4}$$

Daily WBV Exposure

Daily exposure points

**Optional VDV exposure** 



"





Why not enough WBV measurements? Is it cost and complexity of equipment? Can we use cheap wearable accelerometers?

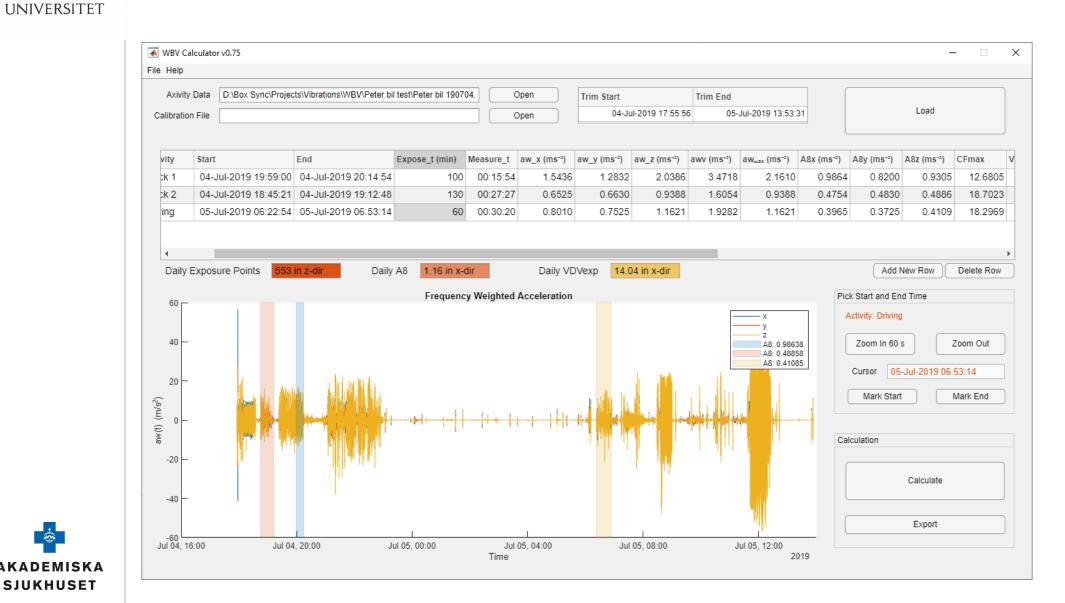


#### Axivity AX3

- Cheap (129 €)
- No cables self contained
- Small, robust and handy (23 X 32.5 X 7.6 m with IPx8 and IP6x)






Introducing Axivity AX3 based WBV Calculator – A tool to measure whole body vibration exposure

|                                                                                                                                                                                                                 | A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| WBV Calculator v0.75<br>File Help                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                               | - 🗆 X                                                                                                                                                                                                            |  |
| Axivity Data D:\Box Sync\Projects\Vibrations\WBV\Peter bil te                                                                                                                                                   | VPeter bil 190704. Open Trim Start Trim End                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |  |
| Calibration File                                                                                                                                                                                                | Open 04-Jul-2019 17:55:56 05-Jul-2019 13:53:31                                                                                                                                                                                                                                                                                                                                                                | Load                                                                                                                                                                                                             |  |
| vity     Start     End     E:       :k 1     04-Jul-2019 19:59:00     04-Jul-2019 20:14:54     20:04-Jul-2019 19:12:48       :k 2     04-Jul-2019 18:45:21     04-Jul-2019 19:12:48     20:05-Jul-2019 06:53:14 | Measure_t     aw_x (ms <sup>-2</sup> )     aw_y (ms <sup>-3</sup> )     aw_z (ms <sup>-3</sup> )     awy (ms <sup>-3</sup> )     aw_{max} (ms <sup>-3</sup> )     At       100     00:15:54     1.5436     1.2832     2.0386     3.4718     2.1610       130     00:27:27     0.6525     0.6630     0.9388     1.6054     0.9388       60     00:30:20     0.8010     0.7525     1.1621     1.9282     1.1621 | A8y (ms <sup>-1</sup> )     A8z (ms <sup>-1</sup> )     CFmax     V       0.9864     0.8200     0.9305     12.6805       0.4754     0.4830     0.4886     18.7023       0.3965     0.3725     0.4109     18.2969 |  |
| ▲ Daily Exposure Points 553 in z-dir Daily Ai                                                                                                                                                                   | 1.16 in x-dir Daily VDVexp 14.04 in x-dir                                                                                                                                                                                                                                                                                                                                                                     | Add New Row Delete Row                                                                                                                                                                                           |  |
| Daily Exposure Points Dog in Z-oir Daily A                                                                                                                                                                      | The in x-dir     Daily VD vexp     14.04 in x-dir       Frequency Weighted Acceleration     Frequency Weighted Acceleration     Frequency Weighted Acceleration                                                                                                                                                                                                                                               | Pick Start and End Time                                                                                                                                                                                          |  |
| 60<br>40<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-20<br>-2                                                                                                                                                 | 00:00 Jul 05, 04:00 Jul 05, 08:00 Jul 05, 12:00 2019                                                                                                                                                                                                                                                                                                                                                          | Activity: Driving<br>Zoom In 60 s Zoom Out<br>Cursor 05-Jul-2019 06:53:14<br>Mark Start Mark End<br>Calculation<br>Calculate<br>Export                                                                           |  |

AKADEMISKA SJUKHUSET



#### User friendly GUI







#### UPPSALA UNIVERSITET

#### User Interface – Output: Exposure details

| Activity               | Start                               |                                                                                                       | End                                                                                                                                                             |                                                                                                                                                                                                                    | Expose_t (min)                                                                                                                                                                                                                                                                                      | Measure_t                                                                                                                                                                                                                                                                                                                                               | aw_x (ms-2)                                                                                                                                                                                                                                                                                                                                                                                                        | aw_y (ms-2)                                                                                                                                                                                                                                                                                                                                                                                                                                       | aw_z (ms-²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | awv (ms-2)                                                                                                                                                                                                                                                                                        | aw <sub>max</sub> (n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns-²) /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48x (I                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 Truck 1              | 04-Ju                               | ul-2019 19:5                                                                                          | /9:00 04-J                                                                                                                                                      | ul-2019 20:14:                                                                                                                                                                                                     | 54 100                                                                                                                                                                                                                                                                                              | 0 00:15:54                                                                                                                                                                                                                                                                                                                                              | 1.5436                                                                                                                                                                                                                                                                                                                                                                                                             | 1.2832                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.471                                                                                                                                                                                                                                                                                             | 8 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .1610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                              |
| Truck 2                | 04-Ju                               | ul-2019 18:4                                                                                          | 5:21 04-J                                                                                                                                                       | ul-2019 19:12:                                                                                                                                                                                                     | 48 130                                                                                                                                                                                                                                                                                              | 0 00:27:27                                                                                                                                                                                                                                                                                                                                              | 0.6525                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6630                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.605                                                                                                                                                                                                                                                                                             | 4 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .9388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C                                                                                                                                                                                                                                                                                                                                                                              |
| 5 Driving              | 05-Ju                               | ul-2019 06:2                                                                                          | 2:54 05-J                                                                                                                                                       | ul-2019 06:53:                                                                                                                                                                                                     | 14 60                                                                                                                                                                                                                                                                                               | 0 00:30:20                                                                                                                                                                                                                                                                                                                                              | 0.8010                                                                                                                                                                                                                                                                                                                                                                                                             | 0.7525                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.928                                                                                                                                                                                                                                                                                             | 2 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .1621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                     |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |
| ns <sup>-2</sup> ) A8x | (ms <sup>-2</sup> ) A               | 48y (ms-2)                                                                                            | A8z (ms-2)                                                                                                                                                      | CFmax V                                                                                                                                                                                                            | DVmax (ms-1175)                                                                                                                                                                                                                                                                                     | VDVx (ms-1175)                                                                                                                                                                                                                                                                                                                                          | VDVy (ms-11)                                                                                                                                                                                                                                                                                                                                                                                                       | *) VDVz (ms                                                                                                                                                                                                                                                                                                                                                                                                                                       | Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s_x Poi                                                                                                                                                                                                                                                                                           | nts_y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Points_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | z                                                                                                                                                                                                                                                                                                                                                                              |
|                        |                                     |                                                                                                       |                                                                                                                                                                 |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 400                                                                                                                                                                                                                                                                                               | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |
| 6                      | 6 Truck 1<br>6 Truck 2<br>6 Driving | 6 Truck 1 04-Ju<br>6 Truck 2 04-Ju<br>6 Driving 05-Ju<br>ms <sup>-2</sup> ) A8x (ms <sup>-2</sup> ) A | 6 Truck 1 04-Jul-2019 19:59<br>6 Truck 2 04-Jul-2019 18:49<br>6 Driving 05-Jul-2019 06:22<br>ms <sup>-2</sup> ) A8x (ms <sup>-2</sup> ) A8y (ms <sup>-2</sup> ) | 6 Truck 1 04-Jul-2019 19:59:00 04-Ju<br>6 Truck 2 04-Jul-2019 18:45:21 04-Ju<br>6 Driving 05-Jul-2019 06:22:54 05-Ju<br>ms <sup>-2</sup> ) A8x (ms <sup>-2</sup> ) A8y (ms <sup>-2</sup> ) A8z (ms <sup>-2</sup> ) | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:5     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:4     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:1     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8y (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   V | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8y (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   VDVmax (ms <sup>-1*75</sup> )   1 | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60   00:30:20     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8y (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   VDVmax (ms <sup>-1*79</sup> )   VDVx (ms <sup>-1*79</sup> ) | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54   1.5436     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27   0.6525     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60   00:30:20   0.8010     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   VDVmax (ms <sup>-1*79</sup> )   VDVx (ms <sup>-1*79</sup> )   VDVy (ms <sup>-1*79</sup> ) | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54   1.5436   1.2832     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27   0.6525   0.6630     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60   00:30:20   0.8010   0.7525     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   VDVmax (ms <sup>-1*79</sup> )   VDVx (ms <sup>-1*79</sup> )   VDVy (ms <sup>-1*79</sup> )   VDVz (ms <sup>-1*79</sup> ) | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54   1.5436   1.2832   2.0386     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27   0.6525   0.6630   0.9388     6   Driving   05-Jul-2019 06:53:14   60   00:30:20   0.8010   0.7525   1.1621 | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54   1.5436   1.2832   2.0386   3.471     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27   0.6525   0.6630   0.9388   1.605     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60   00:30:20   0.8010   0.7525   1.1621   1.928     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   VDVmax (ms <sup>-1*79</sup> )   VDVx (ms <sup>-1*79</sup> )   VDVz (ms <sup>-1*79</sup> )   VDVz (ms <sup>-1*79</sup> )   Points_x   Points_x   Points_x | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54   1.5436   1.2832   2.0386   3.4718   2.0386     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27   0.6525   0.6630   0.9388   1.6054   0.0     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60   00:30:20   0.8010   0.7525   1.1621   1.9282   1.0     ms <sup>-2</sup> )   A8x (ms <sup>-2</sup> )   A8z (ms <sup>-2</sup> )   CFmax   VDVmax (ms <sup>-1*79</sup> )   VDVy (ms <sup>-1*79</sup> )   VDVz (ms <sup>-1*79</sup> )   Points_x   Points_y | 6   Truck 1   04-Jul-2019 19:59:00   04-Jul-2019 20:14:54   100   00:15:54   1.5436   1.2832   2.0386   3.4718   2.1610     6   Truck 2   04-Jul-2019 18:45:21   04-Jul-2019 19:12:48   130   00:27:27   0.6525   0.6630   0.9388   1.6054   0.9388     6   Driving   05-Jul-2019 06:22:54   05-Jul-2019 06:53:14   60   00:30:20   0.8010   0.7525   1.1621   1.9282   1.1621 |

11.4636

12.2421

16,7601

18.7285

81

61

81

61

9.0342

9.3034

81

72

16.7601

18.7285



054

282

0.9388

1.1621

0.4754

0.3965

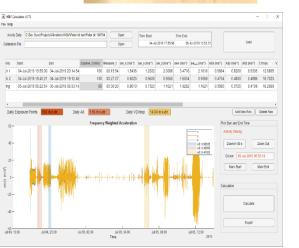
0.4830

0.3725

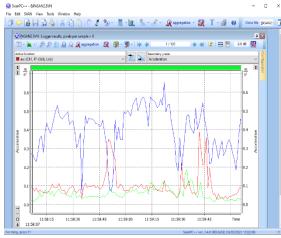
0.4886

0.4109

18,7023


18.2969




Field validation: Axivity AX3 based system vs Gold standard Svantek SV106

- Purpose:
  - Validating our system in real scenarios: compare AX3 based system in the field with a gold standard measurement system













AKADEMISKA SJUKHUSET

## Field validation: – a timber production company

- Multiple wheel-loaders
- A control-room (with low vibrations)
- 16 measurements: AX3s fixed on top of SV106's seat plate

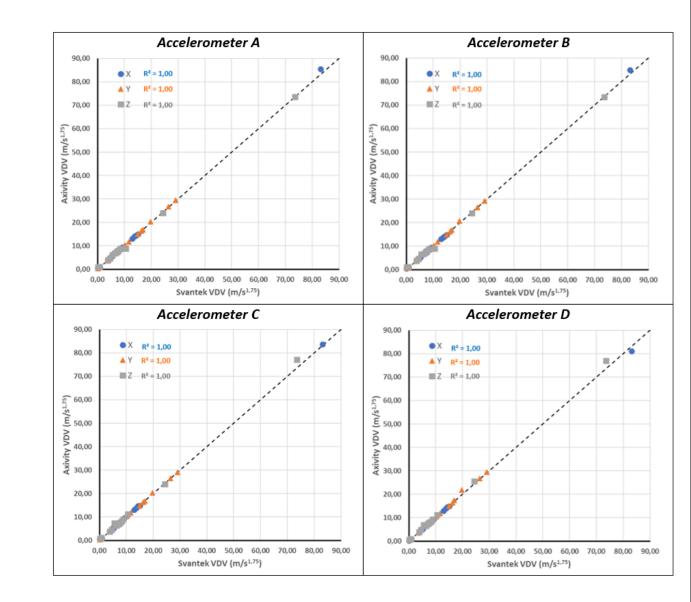






### RMS (a<sub>w</sub>) Comparison

- Very good correlation with Svantek
- Largest mean difference (bias) between AX3 and SV 106 was 0.02 m/s<sup>2</sup>








#### **VDV** Comparison

- Good correlation with Svantek
- Largest mean difference (bias) between AX3 and SV 106 was 0.56 m/s<sup>1,75</sup>







#### Final Remarks

- Field measurements with the AX3 and our software can be a sufficiently reliable method for risk assessments of WBV at work.
- A WBV measurement can be done fairly easily and at a low cost.

